Background Result

Faster than light neutrinos?

Tom Lake tswsl1989@sucs.org

November 9, 2011

イロト イヨト イヨト イヨト

Disclaimer:

While I'm reasonably confident about the contents of this talk, there is the very distinct possibility that I've got things wrong. See the list of references/sources at the end for places where you can get more information

Background Result Standard Model OPERA

THE STANDARD MODEL

- Neutrinos are nearly massless
- Only interact via Weak field interactions
- \blacktriangleright On average, $10^{16} {\rm m}^{-2} {\rm s}^{-1}$ at the Earth's surface

イロト イヨト イヨト イヨト

- Neutrinos are nearly massless
- Only interact via Weak field interactions
- On average, $10^{16} \mathrm{m}^{-2} \mathrm{s}^{-1}$ at the Earth's surface
- But only 3 neutrinos will interact with your body over your lifetime, on average
- \blacktriangleright \rightarrow Neutrino experiments tend to be difficult!

<ロ> (日) (日) (日) (日) (日)

- Neutrinos are nearly massless
- Only interact via Weak field interactions
- \blacktriangleright On average, $10^{16} {\rm m}^{-2} {\rm s}^{-1}$ at the Earth's surface
- But only 3 neutrinos will interact with your body over your lifetime, on average
- \blacktriangleright \rightarrow Neutrino experiments tend to be difficult!
- To add to that, neutrinos 'oscillate' from one type to another over time, so what you end up with is not necessarily what you started with

イロト イヨト イヨト イヨト

- Collaboration of physicists from across the world
- Neutrinos fired at Gran Sasso by CERN
- Detector at Gran Sasso
- Sensitive timing equipment at each end

イロト イヨト イヨト イヨト

Background Result Standard Model OPERA

Figure: The "Particle Cannon", aimed at Gran Sasso

æ

Tom Lake tswsl1989@sucs.org Faster than light neutrinos?

Deelewaynd	Aims of the experiment
Result	Preprint Result
	Possible Solutions

- The main aim is to observe tau-neutrinos from the oscillation of muon-neutrinos
- One of the other possible experiments is to measure the time of flight between CERN and Gran Sasso

→ Ξ →

Packground	Aims of the experiment
Result	Preprint Result Possible Solutions

- Based on measurements over 3 years (2009,2010,2011), the distance was measured to be 730km
- Each packet of neutrinos sent from CERN was recorded, and the profiles matched to the corresponding bunches detected at Gran Sasso
- The result issued in September indicated that neutrinos were arriving sooner than they would if they travelled at c
- The 'anomaly' was calculated as 60.7 ± 6.9(stat.) ± 7.4(sys.) ns

(Statistical and Systematic errors respectively)

高 とう モン・ く ヨ と

Background Result	Aims of the experiment
	Preprint Result
	Possible Solutions

What did they get wrong? Possibilities:

- Clocks weren't synced right
- Error analysis was too simplistic
- Difference between expected and actual neutrino production

Background Result	Aims of the experiment
	Preprint Result
	Possible Solutions

What did they get wrong? Possibilities:

- Clocks weren't synced right
- Error analysis was too simplistic
- Difference between expected and actual neutrino production
- And so on

Background Result	Aims of the experiment
	Preprint Result
	Possible Solutions

Timing system:

- The master clocks were synced to each other, then transported to the experiment sites.
- Calibrated by Swiss Metrology Institute (METAS) and verified by the German Metrology Institute PTB

The error analysis saw a lot of attention when the paper was published - seems to be fine

A B K A B K

Background Result	Aims of the experiment
	Preprint Result
	Possible Solutions

The best explanation I've found suggests that OPERA may not have allowed for the motion of the GPS satellites. This would add an error of \sim 64ns, which would make the results consistent with known physics.

.

Background Result	Aims of the experiment
	Preprint Result
	Possible Solutions

Any Questions?

Background Result	Aims of the experiment
	Preprint Result
	Possible Solutions

- OPERA Collaboration http://operaweb.lngs.infn.it/
- CNGS http://proj-cngs.web.cern.ch/proj-cngs/
- The OPERA preprint http://arxiv.org/abs/1109.4897
- (A) Possible solution http://arxiv.org/abs/1110.2685