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quan·tum me·chan·ics: The branch of mechanics that deals with
the mathematical description of the motion and interaction of
subatomic particles
- OED

I think I can safely say that nobody understands quantum
mechanics
- Richard Feynman, in The Character of Physical Law (1965)
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Quantum Mechanics

I Under the Copenhagen Interpretation, quantum mechanics
allows us to compute the probability of obtaining a given
result from a given measurement

I A quantum system can exist in a superposition of states, each
with a different probability

I We cannot say for certain which of these states the system is
in, until we measure it

I These properties yield some interesting possibilities for
computation and communication
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Some conventions:

I |a〉 - Quantum state a

I 〈a| = (|a〉)∗ - Complex conjugate of state a

I |ψ〉 = α |a〉+ β |b〉+ γ |c〉
State ψ, which can measured to be a with probability |α|2,
b with probability |β|2 or c with probability |γ|2
Once measured, we get |ψ〉 = |a〉 or |ψ〉 = |b〉 or |ψ〉 = |c〉

I 〈a | ψ〉 - The probability of measuring ψ to be in state a
〈a | a〉 = 1, 〈b | a〉 = 0, 〈a | ψ〉 = |α|2

I |a〉 |b〉 = |ab〉
I intend to avoid getting too mathematical, but using this notation
is much more convenient than lengthy descriptions.
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For the computational side of things, we need a couple more
definitions:

I |0〉 - Can be represented as a vector (1
0)

I |1〉 - Can be represented as (0
1)

I |ψ〉 = α |0〉+ β |1〉 unless otherwise stated
Can be represented as (α

β)

|ψ〉 is a qubit, or quantum bit.
In order to maintain a valid quantum state, we have to impose
|α|2 + |β|2 = 1.
This ensures that the maths works out correctly and provides us
with sensible probabilities
(This applies to quantum mechanics generally, not just quantum
computing)
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Quantum Computing

I The idea of superimposed states is key to understanding the
advantages of quantum computing

I We can act on qubits with a set of quantum gates and
measure the result

I Carefully thought out, this can provide a much faster way to
perform calculations than a classical method

I We can work on multiple values at once by abusing the
superposition

I Qubits also have phase information associated with them
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Quantum Circuits

I We can work with circuits made of quantum gates to plan a
quantum computer

I Quantum gates are unitary transformations that act on qubits

I A property called “Universality” states that any complex gate
can be approximated using a small number of simple, single
cubit gates and controlled NOT (CNOT) gates

I A CNOT gate has 2 inputs - data and control

I If the control qubit is |1〉 then the output is NOT data
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What can we use for qubits?

There are a few methods that have been tested:
I Trapped ions

I Hard to prepare
I Tricky to interact multiple qubits
I Reasonably simple to read results

I Nuclear Magnetic Resonance
I Very low signal to noise ratio
I Very difficult to prepare an initial stated
I Easier for qubits to interact (compared to ion traps)
I Has been used to factorise numbers
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I Non linear optics

I Easy to encode and prepare states (polarisation)
I Most single qubit gates created from phase shifters and beam

splitters
I CNOT gates are created using Kerr materials
I The downside is that these materials have only a weak effect

or are very absorbant

I Quantum Dots

I Diamonds
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Fast searches

I Take an unsorted database of N items {|x〉}

I Each entry consists of multiple qubits - e.g |00110101010010〉
I The entry contains multiple fields, we’re looking for a match

in one of those fields - e.g |0011xxxxxxxxxx〉
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I Start with a state is a superposition of the whole database:

|s〉 = 1√
N

N∑
i=0
|xi 〉

I Check if it matches what we’re searching for - the gate for
this returns −1 if the entry matches, and 1 otherwise
O = 1− 2 |ω〉 〈ω|

I Apply a quantum gate U = 2 |s〉 〈s| − 1

I Applying these two gates successively moves us closer towards
the desired answer

I UO |s〉 = (2 |s〉 〈s| − 1)(1− 2 |ω〉 〈ω|) |s〉
I UO |s〉 = (2 |s〉 〈s | s〉+ 2 |ω〉 〈ω | s〉−|s〉−4 |s〉 〈s | ω〉 〈ω | s〉)
I UO |s〉 = 2√

N
|ω〉+

(
1− 4

N

)
|s〉
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What does that all mean?

I Every iteration moves us closer to the answer

I At any given time, if we measure the system we have a
chance, 〈ω | s〉 of measuring the correct answer

I
√

N iterations gives us the best chance of measuring the right
result

I But as we can easily check for the right result, we can run the
search again in the rare case that we get the wrong result

I The probability of measuring the wrong answer decreases as
the size of the database increases

So we now have an O
(√

N
)

algorithm for an unsorted database
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All your RSA are belong to us

I RSA uses two large prime numbers (p, q) to generate part of
the private key (N)

I The fact that N has only these two factors is important!

I A message encrypted with RSA (by using the public key) can
be decrypted with the corresponding private key

I Without the private key, the unencrypted message can be
recovered by either:

I Brute force - encrypt every possible message using the public
key until you find a match

I Factorise N into it’s two factors, enabling you to calculate the
private key

I Factorising large numbers takes classical computers a long
time!
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Shor’s Algorithm

I Shor’s algorithm reduces the factorisation of a large number
N to the problem of finding the period of a function

I f (x) = ax mod N

I a < N and gcd (a,N) = 1

I Use a quantum Fourier Transform to find the period r of f

I The two prime factors of N are then given by gcd
(
a

r
2 ± 1,N

)
I This runs in O((log N)3), rather than the exponential time

required classically
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Any questions?

Slides will be available via talks section of the SUCS website, or at
http://sucs.org/~tswsl1989/talks/
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